RESOLUCION DE SISTEMAS DE ECUACIONES LINEALES
USANDO DETERMINANTES
MATE 3172
Módulo Autotutorial

Colegio Universitario Tecnológico de Bayamón
UPR

Módulo XXII

Preparado por:
Prof. Gloria Díaz de Gómez
CENTRO CIEMAT-CUTB
MODULO 22: MATE 3172
TOPICO : RESOLUCION DE SISTEMAS DE ECUACIONES
LINEALES USANDO DETERMINANTES

RELEVANCIA

En el módulo anterior aprendiste a resolver sistemas de ecuaciones lineales usando matrices.

En este módulo aprenderás que a cada matriz cuadrada corresponde un número llamado su determinante. Los sistemas de n ecuaciones lineales con n variables pueden también resolverse usando determinantes, utilizando una regla muy importante, llamada la regla de Cramer, que estudiarás a continuación.

La regla de Cramer se aplica también en muchos de tus otros cursos, así que es importante que domines este material.

OBJETIVOS

Al completar el estudio de este módulo, el estudiante podrá:

1. Evaluar determinantes de segundo orden.
2. Evaluar determinantes de tercer orden.
3. (Opcional) Evaluar determinantes de orden n, donde n ≥ 3, expandiendo por cualquier fila o columna.
4. Resolver un sistema de dos ecuaciones lineales con dos variables usando la regla de Cramer.
5. Resolver un sistema de tres ecuaciones lineales con tres variables usando la regla de Cramer.
PRE - PRUEBA

1 - 2 Evalúa los siguientes determinantes:

1. \[
\begin{vmatrix}
-1 & 4 \\
2 & 3 \\
\end{vmatrix}
\]

2. \[
\begin{vmatrix}
1 & -3 & 4 \\
3 & 1 & -1 \\
2 & -3 & 2 \\
\end{vmatrix}
\]

3 (Opcional) Evalúa:

\[
\begin{vmatrix}
2 & 0 & 0 & 0 \\
8 & 4 & 0 & 0 \\
3 & 5 & 1 & 2 \\
6 & 3 & 0 & 7 \\
\end{vmatrix}
\]

4 - 5 Resuelve los siguientes sistemas usando la regla de Cramer.

4. \[
\begin{cases}
-x + 4y = 1 \\
3x + 5y = 14
\end{cases}
\]

5. \[
\begin{cases}
x + y + z = 2 \\
3x - 2y - z = 0 \\
2x + 2y + 3z = 3
\end{cases}
\]

RESPUESTAS
PRE - PRUEBA

1. -11
2. -21
3. 56
4. x = 3, y = 1
5. x = 1, y = 2, z = -1
DETERMINANTES

Recuerda que en el módulo anterior estudiaste que una matriz es un arreglo rectangular de números y que una matriz cuadrada es aquella en donde el número de filas es igual al número de columnas.

Así, la matriz

\[
\begin{pmatrix}
  a & b \\
  c & d
\end{pmatrix}
\]

es una matriz cuadrada con dos filas y dos columnas, y decimos que es una matriz de orden 2.

Asociado con toda matriz cuadrada hay un número, llamado su determinante. Primero definiremos el determinante de una matriz de orden 2.

Así, el determinante de la matriz

\[
\begin{pmatrix}
  a & b \\
  c & d
\end{pmatrix}
\]

se denota

\[
\begin{vmatrix}
  a & b \\
  c & d
\end{vmatrix}
\]

y se define por la siguiente fórmula:

\[
\begin{vmatrix}
  a & b \\
  c & d
\end{vmatrix} = ad - bc
\]
Para recordar esta fórmula, podemos usar el siguiente diagrama:

Los signos + y - indican los signos asociados con cada producto.

En palabras, el determinante de una matriz de orden 2 se obtiene hallando el producto de los elementos en la diagonal principal y restando de este producto, el producto de los elementos en la otra diagonal.

Cuando nos referimos a un determinante de una matriz de orden 2, decimos también que el determinante es de orden 2.

**EJEMPLO 1**

Evaluar:

a. \[
\begin{vmatrix}
5 & -3 \\
2 & 4
\end{vmatrix}
\]

b. \[
\begin{vmatrix}
5 & 1 \\
3 & -2
\end{vmatrix}
\]

c. \[
\begin{vmatrix}
3 & 1 \\
0 & 5
\end{vmatrix}
\]

\[
\begin{array}{c}
a. \\
\begin{vmatrix}
5 & -3 \\
2 & 4
\end{vmatrix} = 5(4) - 2(-3) = 20 + 6 = 26
\end{array}
\]

En la práctica, simplemente, al producto de los elementos en la diagonal principal, le sumamos algebraicamente el opuesto del producto de los elementos en la otra diagonal.

Así,

\[
\begin{vmatrix}
5 & -3 \\
2 & 4
\end{vmatrix} = 20 + 6 = 26
\]
MODULO 22 MATE 3172

b. 
\[
\begin{vmatrix}
5 & 1 \\
3 & -2
\end{vmatrix} = -10 - 3 = -13
\]

c. 
\[
\begin{vmatrix}
3 & 1 \\
0 & 5
\end{vmatrix} = 15 - 0 = 15
\]

E J E R C I C I O 1

Evalúa los siguientes determinantes:

a. 
\[
\begin{vmatrix}
-1 & 3 \\
2 & 4
\end{vmatrix}
\]

b. 
\[
\begin{vmatrix}
3 & 2 \\
-4 & 0
\end{vmatrix}
\]

R E S P U E S T A S

a. -10

b. 8
RESOLUCIÓN DE SISTEMAS DE DOS ECUACIONES LINEALES
CON DOS VARIABLES USANDO DETERMINANTES

Veamos cómo podemos aplicar los determinantes de segundo orden al resolver sistemas de dos ecuaciones lineales con dos variables.

Consideremos el sistema:

\[
\begin{align*}
ax + by &= h \\
cx + dy &= k
\end{align*}
\]

Se puede probar fácilmente, utilizando cualquiera de los métodos ya estudiados (sustitución, adición, matrices) que, si \((ad - bc) \neq 0\) el sistema tiene la única solución:

\[
\begin{align*}
x &= \frac{hd - kb}{ad - bc}, \\
y &= \frac{ak - ch}{ad - bc}
\end{align*}
\]

Estas fórmulas son muy útiles, pero tienen el inconveniente de que son difíciles de recordar. Sin embargo, usando determinantes, se facilita su memorización.

En efecto, fíjate que:

\[
ad - bc = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \text{determinante de la matriz de los coeficientes del sistema}
\]

Al determinante de la matriz cuadrada de los coeficientes de un sistema de ecuaciones lineales se le llama determinante del sistema y lo designaremos por \(D\).

Nota que:

\[
hd - kb = \begin{vmatrix} h & b \\ k & d \end{vmatrix}
\]

Designaremos este determinante por \(D_x\).

Además:

\[
ak - ch = \begin{vmatrix} a & h \\ c & k \end{vmatrix}
\]

Designaremos este determinante por \(D_y\).
Escribimos otra vez las fórmulas para $x$ y para $y$, usando notación de determinantes.

$$x = \frac{hd - kb}{ad - bc} = \frac{\begin{vmatrix} h & b \\ k & d \end{vmatrix}}{D} = \frac{D_x}{D}$$

$$y = \frac{ak - ch}{ad - bc} = \frac{\begin{vmatrix} a & h \\ c & k \end{vmatrix}}{D} = \frac{D_y}{D}$$

Observa que usando esta notación, los resultados son fáciles de recordar.

Observa que en la fórmula para cualquiera de las variables, el denominador es el determinante del sistema, mientras que el numerador es el determinante que se encuentra reemplazando en

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

los coeficientes de la variable buscada por las constantes $h$, $k$ que aparecen en el segundo miembro de cada ecuación.

Así:

$$x = \frac{D_x}{D} = \frac{\begin{vmatrix} h & b \\ k & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}$$

$D_x$ se encuentra reemplazando la primera columna $a$ (donde aparecen los coeficientes de $x$) por la columna de constantes $h$. 
\[
y = \frac{Dy}{D} = \begin{vmatrix}
a & h \\
c & k \\
a & b \\
c & d \\
\end{vmatrix}
\]

Dy se encuentra reemplazando la segunda columna \(b\) (donde aparecen los coeficientes de \(y\)) por la columna de constantes \(h\).

Este proceso que hemos descrito para resolver sistemas de ecuaciones lineales usando determinantes se conoce con el nombre de la **regla de Cramer**.

**RESUMEN DE LA REGLA DE CRAMER**

Sea el sistema:

\[
\begin{align*}
ax + by &= h \\
cx + dy &= k
\end{align*}
\]

Si el determinante \(D\) del sistema es distinto de 0, entonces el sistema tiene la única solución dada por:

\[
x = \frac{Dx}{D}, \quad y = \frac{Dy}{D}, \quad \text{donde} \quad D = \begin{vmatrix}
a & b \\
c & d \\
\end{vmatrix}
\]

y donde:

- \(Dx\) se obtiene reemplazando en \(a\) la columna \(a\) por \(h\)
- \(Dy\) se obtiene reemplazando en \(a\) la columna \(b\) por \(h\)
EJEMPLO 2

Resolver, usando la regla de Cramer, los siguientes sistemas:

a.
\[
\begin{align*}
3x + 2y &= 4 \\
5x - 3y &= 13
\end{align*}
\]

b.
\[
\begin{align*}
x + 7y &= 15 \\
3y + 2x &= 8
\end{align*}
\]

a.
\[
\begin{align*}
3x + 2y &= 4 \\
5x - 3y &= 13
\end{align*}
\]

Primero hallamos el determinante D del sistema.

\[
D = \frac{3}{5} - \frac{2}{-3} = -9 - 10 = -19
\]

D = -19 ≠ 0, luego el sistema tiene una sola solución.

\[
\begin{bmatrix}
4 & 2 \\
13 & -3 \\
3 & 2 \\
5 & -3 \\
3 & 4
\end{bmatrix} = \frac{-12 - 26}{-19} = \frac{-38}{-19} = +2
\]

\[
\begin{bmatrix}
5 & 13 \\
3 & 2 \\
5 & -3
\end{bmatrix} = \frac{39 - 20}{-19} = \frac{19}{-19} = -1
\]

La solución es \(x = 2, y = -1\), es decir, el par ordenado (2, -1).

b.
\[
\begin{align*}
x + 7y &= 15 \\
3y + 2x &= 8
\end{align*}
\]

Aquí, antes de aplicar la regla de Cramer, tenemos que arreglar las ecuaciones de manera que los términos en \(x\) estén en una misma columna y los términos en \(y\) también estén en una misma columna.
\[
\begin{aligned}
\left\{ \begin{array}{c}
x + 7y = 15 \\
2y + 3y = 8
\end{array} \right.
\end{aligned}
\]

Determinante \( D \) del sistema = \[
\begin{vmatrix}
1 & 7 \\
2 & 3
\end{vmatrix}
= 3 - 14 = -11
\]

Luego:
\[
\begin{aligned}
x &= \frac{15 \cdot 3 - 7 \cdot 8}{1 \cdot 3 - 7 \cdot 2} = \frac{45 - 56}{-11} = 1 \\
y &= \frac{1 \cdot 8 - 15 \cdot 2}{1 \cdot 3 - 7 \cdot 2} = \frac{8 - 30}{-11} = 2
\end{aligned}
\]

La solución es: \( x = 1, y = 2 \), es decir, el par ordenado \((1,2)\).

**EJERCICIO 2**

Resuelve, usando la regla de Cramer, el sistema:

\[
\begin{aligned}
\left\{ \begin{array}{c}
2x - y = 4 \\
x + 3y = 9
\end{array} \right.
\end{aligned}
\]

**RESPUESTA**

\( x = 3, y = 2 \)

**ACLARACION:** Si el determinante \( D = 0 \), no se pueden usar las fórmulas

\[
\begin{aligned}
x &= \frac{D_x}{D}, & y &= \frac{D_y}{D}
\end{aligned}
\]

Si \( D = 0 \), el sistema es **inconsistente** (no tiene solución) o **dependiente** (tiene infinitas soluciones). Para averiguar cuál de los dos es, te sugiero que expreses primero cada una de las ecuaciones en la forma \( y = mx + b \). Recuerda del módulo XX que si las pendientes son iguales, pero los interceptos en \( y \) son diferentes, el sistema no tiene
solución, es decir, es **inconsistente**. Ahora bien, si las pendientes son iguales y los interceptos en y también son iguales, las ecuaciones son equivalentes, por lo que el sistema es **dependiente** y tiene infinitas soluciones.

**DETERMINANTE DE TERCER ORDEN**

Consideremos la matriz cuadrada de orden 3:

\[
\begin{pmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{pmatrix}
\]

El determinante de la matriz anterior es un determinante de tercer orden, se denota por

\[
\begin{vmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{vmatrix}
\]

y se define por la siguiente fórmula:

\[
\begin{vmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{vmatrix} = a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - a_1b_3c_2 - a_2b_1c_3 - a_3b_2c_1
\]

Como ves, esta fórmula es bastante difícil de recordar. No hace falta que te la aprendas, pues hay una manera rápida de evaluar un determinante de tercer orden, sin necesidad de memorizar la fórmula. Ahora bien, tienes que tener cuidado, ya que el procedimiento que indicaremos a continuación **sólo se puede usar para evaluar determinantes de tercer orden**.
Para evaluar un determinante de tercer orden, repetimos las columnas 1 y 2 a la derecha de la tercera columna y usamos el siguiente diagrama:

\[
\begin{array}{ccc}
  a & b & c \\
  1 & 1 & 1 \\
  a & b & c \\
  2 & 2 & 2 \\
  a & b & c \\
  3 & 3 & 3 \\
\end{array}
\]

Formamos el producto de los tres elementos a través de los cuales pasa cada flecha, precediéndolo del signo + si la flecha va hacia abajo y del signo −, si la flecha va hacia arriba. Escribimos entonces la suma algebraica de los números resultantes de la manera siguiente:

\[a_1b_2c_3 + b_1c_2a_3 + c_1a_2b_3 - a_3b_2c_1 - b_3c_2a_1 - c_3a_2b_1\]

Observa que esta suma es igual a la dada en la definición. Ilustremos con un ejemplo.
EJEMPLO 3

Evaluar el determinante:

\[
\begin{vmatrix}
1 & -3 & 4 \\
3 & 2 & -1 \\
2 & -3 & 2 \\
\end{vmatrix}
\]

Se tiene:

\[
(1)(1)(2) + (-3)(-1)(2) + (4)(3)(-3) \\
- (2)(1)(4) - (-3)(-1)(1) - (2)(3)(-3) \\
= 2 + 6 - 36 - 8 - 3 + 18 = -21
\]

EJERCICIO 3

Evalúa el determinante:

\[
\begin{vmatrix}
2 & -2 & -3 \\
-5 & 6 & 4 \\
3 & -1 & 2 \\
\end{vmatrix}
\]

RESPUESTA

27
RESOLUCIÓN DE UN SISTEMA DE TRES ECUACIONES LINEALES
CON TRES VARIABLES USANDO LA REGLA DE CRAMER

Ya hemos visto cómo se resuelve un sistema de dos ecuaciones lineales con dos variables usando la regla de Cramer. Este procedimiento también puede aplicarse cuando se tiene un sistema de tres ecuaciones lineales con tres variables.

Así, consideremos ahora el siguiente sistema de tres ecuaciones lineales con tres variables:

\[
\begin{align*}
    a_1x + b_1y + c_1z &= k_1 \\
    a_2x + b_2y + c_2z &= k_2 \\
    a_3x + b_3y + c_3z &= k_3
\end{align*}
\]

El determinante \( D \) de este sistema está dado por:

\[
D = \begin{vmatrix}
    a_1 & b_1 & c_1 \\
    a_2 & b_2 & c_2 \\
    a_3 & b_3 & c_3
\end{vmatrix}
\]

Si \( D \neq 0 \), entonces el sistema tiene la única solución:

\[
\begin{align*}
    x &= \frac{D_x}{D}, \\
    y &= \frac{D_y}{D}, \\
    z &= \frac{D_z}{D}
\end{align*}
\]

donde, partiendo de:

\[
D_x = \begin{vmatrix}
    a_1 & b_1 & k_1 \\
    a_2 & b_2 & k_2 \\
    a_3 & b_3 & k_3
\end{vmatrix}
\]

\( D_x \) se obtiene reemplazando la columna

\[
\begin{align*}
    a_1 & \quad k_1 \\
    a_2 & \quad k_2 \\
    a_3 & \quad k_3
\end{align*}
\]

dejando las otras columnas igual.
MODULO 22 MATE 3172

$D_y$ se obtiene reemplazando la columna

\[
\begin{array}{cc}
    b_1 & k_1 \\
    b_2 & k_2 \\
    b_3 & k_3
\end{array}
\]
dejando las otras igual.

$D_z$ se obtiene reemplazando la columna

\[
\begin{array}{cc}
    c_1 & k_1 \\
    c_2 & k_2 \\
    c_3 & k_3
\end{array}
\]
dejando de las otras igual.

Aclaración: Si $D = 0$, no podemos usar la regla de Cramer.

Ejemplo 4

Resolver, usando la regla de Cramer, el sistema:

\[
\begin{align*}
    2x + y &= 9 \\
    3y + z &= 0 \\
    x + y - z &= 8
\end{align*}
\]

Escribimos otra vez las ecuaciones, teniendo cuidado de escribir los términos en la misma variable en la misma columna.

\[
\begin{align*}
    2x + y &= 9 \\
    3y + z &= 0 \\
    x + y - z &= 8
\end{align*}
\]

El determinante $D$ del sistema está dado por:

\[
D = \begin{vmatrix}
    2 & 1 & 0 \\
    0 & 3 & 1 \\
    1 & 1 & -1
\end{vmatrix}
\]
Hallemos el valor numérico de $D$.

$$D = \begin{vmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 1 & 1 & -1 \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ 0 & 3 \\ 1 & 1 \end{vmatrix} = -6 + 1 - 2 = -7$$

$$x = \begin{vmatrix} 9 & 1 & 0 \\ 0 & 3 & 1 \\ 8 & 1 & 1 \end{vmatrix} = \frac{-27 + 8 - 9}{-7} = \frac{-28}{-7} = 4$$

$$y = \begin{vmatrix} 2 & 9 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 1 & 8 & -1 & 1 \end{vmatrix} = \frac{9 - 16}{-7} = \frac{-7}{-7} = 1$$

$$z = \begin{vmatrix} 2 & 1 & 9 & 2 \\ 0 & 3 & 0 & 3 \\ 1 & 1 & 8 & -1 \end{vmatrix} = \frac{48 - 27}{-7} = \frac{21}{-7} = -3$$

La solución es: $x = 4$, $y = 1$, $z = -3$
EJERCICIO 4

Resuelve, usando la regla de Cramer, el sistema:

\[
\begin{align*}
2x + 2y - z &= 1 \\
3x - 2y + z &= 7 \\
3x - y - z &= 2
\end{align*}
\]

RESPUESTA

\[x = 2, \ y = 1, \ z = 3\]

EVALUACION DE DETERMINANTES POR EL METODO DE MENORES

***OPCIONAL***

Consideremos otra vez el determinante de tercer orden:

\[
D = \begin{vmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3 \\
\end{vmatrix}
\]

El procedimiento que ya conoces de añadir dos columnas para luego evaluar dicho determinante es rápido y fácil, pero tiene el inconveniente de que únicamente puede aplicarse para evaluar determinantes de orden 3.

Ahora vamos a estudiar otro método para evaluar determinantes de orden 3 que, aunque es más complicado que el anterior, puede generalizarse luego para evaluar cualquier determinante de orden superior a 3.

Primero, tenemos que definir qué se entiende por menor de un elemento.

Considera, por ejemplo, el elemento a_1 en el determinante anterior. Nota que a_1 está en la primera fila y la primera columna. Fíjate que si eliminamos la fila y la columna de a_1, es decir, si eliminamos la primera fila y la primera columna

\[
D = \begin{vmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3 \\
\end{vmatrix}
\]
obtenemos el determinante de segundo orden

\[
\begin{array}{cc}
b_2 & c_2 \\
b_3 & c_3 \\
\end{array}
\]

Este determinante de segundo orden obtenido al eliminar (tachar) la fila y la columna donde se encontraba \( a_1 \) recibe el nombre de menor de \( a_1 \).

Precisemos la definición.

**MENOR DE UN ELEMENTO**

El menor de un elemento cualquiera en un determinante de orden 3 es el determinante de orden 2 que se obtiene al eliminar la fila y la columna donde se encuentra el elemento.

**EJEMPLO 5**

En

\[
\begin{vmatrix}
a & b & c \\
5 & 4 & 3 \\
1 & 2 & 7 \\
\end{vmatrix}
\]

hallar:

a. el menor de \( a \)
b. el menor de \( b \)

Para hallar el menor de \( a \), observemos primero que \( a \) está en la primera fila y la primera columna. Eliminando la primera fila y la primera columna, tenemos:

\[
\text{menor de } a = \begin{vmatrix} 4 & 3 \\ 2 & 7 \end{vmatrix} = 28 - 6 = 22
\]

Para hallar el menor de \( b \), notemos que \( b \) está en la primera fila y la segunda columna. Eliminando la primera fila y la segunda columna, tenemos:

\[
\text{menor de } b = \begin{vmatrix} 5 & 3 \\ 1 & 7 \end{vmatrix} = 35 - 3 = 32
\]
EJERCICIO 5

En

\[
\begin{pmatrix}
a & b & c \\
5 & 4 & 3 \\
1 & 2 & 7
\end{pmatrix}
\]

hallar el menor de c.

RESPUESTA

\[
\begin{pmatrix}
5 & 4 \\
1 & 2
\end{pmatrix} = 6
\]

COFACTOR DE UN ELEMENTO

Definición

Si M es el menor de un elemento p que está en la fila i y la columna j, entonces el cofactor de p es:

\[(-1)^{i+j} (M)\]

Observa que si i + j es PAR, entonces \((-1)^{i+j} = 1\).

Por ejemplo, si i = 3, j = 2, i + j = 5, \((-1)^{3+2} = (-1)^5 = -1\)

Luego, se tiene:

Si i + j es PAR, cofactor de p = menor de p = M

Si i + j es IMPAR, cofactor de p = - menor de p = -M

Ilustremos con un ejemplo.
EJEMPLO 6

En
\[
\begin{pmatrix}
  a & b & c \\
  5 & 4 & 3 \\
  1 & 2 & 7
\end{pmatrix}
\]

hallar:

a. el cofactor de \( a \)

b. el cofactor de \( b \)

Para hallar el cofactor de \( a \), observamos que \( a \) está en la fila 1 y la columna 1, luego aquí:

\( i = \) número de la fila = 1
\( j = \) número de la columna = 1

luego: \( i + j = 1 + 1 = 2 \) (PAR).

Por lo tanto,

el cofactor de \( a \) = menores de \( a \) = \[
\begin{pmatrix}
  4 & 3 \\
  2 & 7
\end{pmatrix}
\] = \( 28 - 6 = 22 \)

Para hallar el cofactor de \( b \), observamos que \( b \) está en la primera fila y la segunda columna, luego aquí:

\[
\begin{array}{c}
  i = 1 \\
  i = 2 \\
  i + j = 3 \text{ (IMPAR)}
\end{array}
\]

Por lo tanto,

cofactor de \( b \) = -menor de \( b \) = \[
\begin{pmatrix}
  5 & 3 \\
  1 & 7
\end{pmatrix}
\] = \( -(35 - 3) = -32 \)
EJERCICIO 6

En

\[
\begin{vmatrix}
1 & 2 & 3 \\
p & q & r \\
4 & 5 & 6
\end{vmatrix}
\]

Hallar:

a. menor de p
b. cofactor de p
c. menor de q
d. cofactor de q

RESPUESTAS

a. -3
b. 3
c. -6
d. -6

ACLARACIÓN: Para determinar si el cofactor de un elemento es igual al menor de dicho elemento, o si es igual al negativo del menor, podemos usar el siguiente diagrama de signos:

\[
\begin{array}{ccc}
+ & - & + \\
- & + & - \\
+ & - & + \\
\end{array}
\]

Comparar con el determinante

\[
\begin{vmatrix}
1 & 2 & 3 \\
p & q & r \\
4 & 5 & 6
\end{vmatrix}
\]

Inmediatamente notamos que:

el cofactor de p = negativo del menor de p
el cofactor de q = menor de q
el cofactor de r = negativo del menor de r
el cofactor de 4 = menor de 4, ... etc.
Se puede probar que el valor de un determinante de orden 3 puede hallarse multiplicando cada elemento de la primera fila por su cofactor y después sumando los productos.

\[
\begin{vmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{vmatrix} = a \begin{vmatrix} e & f \\
g & i \end{vmatrix} + b \begin{vmatrix} -d & f \\
- & i \end{vmatrix} + c \begin{vmatrix} d & e \\
- & g \end{vmatrix}
\]

Esta fórmula nos da lo que se conoce con el nombre de desarrollo del determinante según los elementos de la primera fila (expansión del determinante por la primera fila).

De hecho, se puede probar que si multiplicamos cada elemento de cualquier otra fila o columna por su cofactor y después sumamos los productos obtenidos, encontramos el mismo resultado que cuando desarrollábamos usando la primera fila.

Se tiene entonces el siguiente teorema:

**Teorema**

Cualquier determinante de orden 3 es la suma de los tres productos obtenidos multiplicando cada elemento de cualquier fila o columna por su cofactor correspondiente.

**EJEMPLO 7**

Evaluar el determinante

\[
\begin{vmatrix}
1 & -3 & 4 \\
3 & 1 & -1 \\
2 & -3 & 2 \\
\end{vmatrix}
\]

a. expandiendo por la primera fila.

\[
\begin{vmatrix}
1 & -3 & 4 \\
3 & 1 & -1 \\
2 & -3 & 2 \\
\end{vmatrix}
\]

Recuerda el esquema de signos

\[
\begin{pmatrix}
+ & - & + \\
- & + & - \\
+ & - & + \\
\end{pmatrix}
\]
Los elementos de la primera fila son 1, -3, 4.

Cofactor de 1 es \[ \begin{vmatrix} 1 & -1 \\ -3 & 2 \end{vmatrix} = + (2 - 3) = -1 \]

Cofactor de -3 es \[ \begin{vmatrix} 3 & -1 \\ 2 & 2 \end{vmatrix} = - (6 + 2) = -8 \]

Cofactor de 4 es \[ \begin{vmatrix} 3 & 1 \\ 2 & -3 \end{vmatrix} = + (-9 - 2) = -11 \]

Hallamos el producto de cada elemento de la primera fila por su cofactor correspondiente y luego sumamos algebraicamente estos productos.

\[(1)(-1) + (-3)(-8) + 4(-11) = -1 + 24 - 44 = -21\]

b. expandiendo por la primera columna.

\[\begin{vmatrix} 1 & -3 & 4 \\ 3 & 1 & -1 \\ 2 & -3 & 2 \end{vmatrix}\]

Los elementos de la primera columna son 1, 3, 2.

Cofactor de 1 es \[ \begin{vmatrix} 1 & -1 \\ -3 & 2 \end{vmatrix} = (2 - 3) = -1 \]

Cofactor de -3 es \[ \begin{vmatrix} 3 & 4 \\ -3 & 2 \end{vmatrix} = -(6 + 12) = -6 \]

Cofactor de 2 es \[ \begin{vmatrix} -3 & 4 \\ 1 & -1 \end{vmatrix} = 3 - 4 = -1 \]

Hallamos ahora el producto de cada elemento de la primera columna por su cofactor correspondiente y luego sumamos estos productos.

\[(1)(-1) + 3(-6) + 2(-1) = -1 - 18 - 2 = -21\]

Nota que es el mismo resultado obtenido en la parte a.
EJERCICIO 7

Evaluar el determinante

\[
\begin{vmatrix}
2 & -2 & -3 \\
-5 & 6 & 4 \\
3 & -1 & 2
\end{vmatrix}
\]

desarrollando (expandiendo) según los elementos de la tercera fila.

RESPUESTA

27

EJEMPLO 8

Evaluar el determinante

\[
\begin{vmatrix}
2 & 1 & 3 \\
4 & 0 & 0 \\
5 & 1 & 2
\end{vmatrix}
\]

expandiendo por cualquier fila o columna.

Es obvio que reducimos considerablemente el trabajo cuando escogemos la fila o columna con mayor número de ceros. Observa que no es necesario buscar el cofactor de un elemento que sea 0, pues al multiplicar por 0 cualquier número da 0.

Comparando con el esquema de signos

\[
\begin{vmatrix}
+ & - & + \\
- & + & - \\
+ & - & +
\end{vmatrix}
\]

observa que el cofactor de 4 es \(- \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} = -(2 - 3) = 1\)

Por lo tanto, el valor del determinante es \(4(1) = 4\).
EJERCICIO 8

Evalúa el determinante

\[
\begin{vmatrix}
2 & 3 & 1 \\
4 & 3 & 0 \\
1 & 1 & 0 \\
\end{vmatrix}
\]

expandiendo por cualquier fila o columna.

RESPUESTA

1

Los métodos que acabamos de desarrollar para evaluar determinantes de orden 3 expandiendo por una fila o columna, pueden generalizarse para evaluar cualquier determinante de orden superior.

El menor de un elemento cualquiera de un determinante de orden \(n\) es el determinante de orden \(n - 1\) que se obtiene eliminando la fila y la columna donde esté el elemento. El cofactor de dicho elemento se halla también multiplicando su menor por \((-1)^{i+j}\), donde \(i, j\) representan respectivamente la fila y la columna donde está el elemento. También:

Si \(i+j\) es par, cofactor del elemento = menor del elemento

Si \(i+j\) es impar, cofactor del elemento = negativo del menor del elemento.

Se tiene también el siguiente teorema, que permite evaluar cualquier determinante de orden \(n\), donde \(n \geq 3\).

TEOREMA

El valor de un determinante de orden \(n\), donde \(n \geq 3\), es la suma de los \(n\) productos obtenidos multiplicando cada elemento de cualquier fila (o columna) por su cofactor correspondiente.
EJEMPLO 9

Evalúa el determinante:

\[
\begin{vmatrix}
1 & 3 & 2 & 4 \\
5 & 0 & 0 & 0 \\
1 & 5 & 0 & 6 \\
2 & 3 & 3 & 3
\end{vmatrix}
\]

Desarrollaremos por la segunda fila. El 5 está en la segunda fila y la primera columna, luego, aquí

\[
i = 2 \\
j = 1 \\
i + j = 3 \text{ (IMPAR)}
\]

El cofactor de 5 es el negativo de su menor.

\[
\begin{vmatrix}
3 & 2 & 4 \\
5 & 0 & 6 \\
3 & 3 & 3
\end{vmatrix}
\]

Luego, el cofactor de 5 es -12. El determinante es igual a 5(-12) = -60.

EJERCICIO 9

Evalúa el determinante:

\[
\begin{vmatrix}
2 & 0 & 0 & 0 \\
8 & 4 & 0 & 0 \\
3 & 5 & 1 & 2 \\
6 & 3 & 0 & 7
\end{vmatrix}
\]

RESPUESTA

56
PRUEBA

1 - 4 Evalúa los siguientes determinantes:

1. \[\begin{vmatrix} -1 & 4 \\ 2 & 3 \end{vmatrix} \]

2. \[\begin{vmatrix} 3 & 5 \\ -1 & 0 \end{vmatrix} \]

3. \[\begin{vmatrix} -8 & -3 & 2 \\ 9 & 4 & -1 \\ 5 & -1 & 5 \end{vmatrix} \]

4. \[\begin{vmatrix} 1 & -3 & 2 \\ 2 & 4 & -1 \\ 3 & -1 & 5 \end{vmatrix} \]

5 - 8 Resuelve los siguientes sistemas de ecuaciones lineales usando la regla de Cramer.

5. \[\begin{cases} -x + 4y = 1 \\ 3x + 5y = 14 \end{cases} \]

6. \[\begin{cases} 3x - 2y = 5 \\ 3y + x + 2 = 0 \end{cases} \]

7. \[\begin{cases} x + y + z = 2 \\ 3x - 2y - z = 0 \\ 2x + 2y + 3z = 3 \end{cases} \]

8. \[\begin{cases} 3x - 2y + 5z = 14 \\ y - 4z = -10 \\ 2y + z = 7 \end{cases} \]

9 -10 Opcional: Evalúa cada uno de los siguientes determinantes, expandiendo por cualquier fila o columna.

9. \[\begin{vmatrix} 7 & 1 & -5 \\ 4 & -3 & 1 \\ 0 & 9 & 6 \end{vmatrix} \]

*10. \[\begin{vmatrix} 0 & 0 & 0 & 1 \\ 2 & 3 & 4 & 0 \\ 2 & 3 & 4 & 0 \\ 5 & 3 & 2 & 1 \end{vmatrix} \]
RESPUESTAS
PRUEBA

1. -11
2. 5
3. -60
4. 30
5. $x = 3, y = 1$
6. $x = 1, y = -1$
7. $x = 1, y = 2, z = -1$
8. $x = 1, y = 2, z = 3$
9. -393
10. 0